avatar

目录
knn_application

python counter类:

python
1
2
3
4
5
>>> from collections import Counter
>>> s = "hello pinsily"
>>> d = Counter(s)
>>> d
Counter({'l': 3, 'i': 2, 'h': 1, 'e': 1, 'o': 1, ' ': 1, 'p': 1, 'n': 1, 's': 1, 'y': 1})

most_common(n)
返回数量最多的前 n 个元素

python
1
2
>>> d.most_common(3)
[('l', 3), ('i', 2), ('h', 1)]

代码实现:

python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np 
from math import sqrt
import matplotlib.pyplot as plt
import warnings
from matplotlib import style
from collections import Counter
style.use('fivethirtyeight')
dataset = {'k':[[1,2],[2,3],[3,1]], 'r':[[6,5],[7,7],[8,6]]}
new_features = [5,7]
for i in dataset:
for ii in dataset[i]:
plt.scatter(ii[0],ii[1],s=100,color=i)

def k_nearest_neighbors(data, predict, k=3):
if len(data) >= k:
warnings.warn('K is set to a value less than total voting groups!')

distances = []
for group in data:
for features in data[group]:
euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict)) #欧几里得距离
distances.append([euclidean_distance,group])

votes = [i[1] for i in sorted(distances)[:k]]
vote_result = Counter(votes).most_common(1)[0][0] #不使用[0][0],得到的是[('r', 3)]. [0][0]得到元组中第一个元素
return vote_result

result = k_nearest_neighbors(dataset,new_features,k=3)
print(result)
plt.scatter(new_features[0],new_features[1],s=50,color=result)#预测的数据用小红点表示
plt.show()

运行结果:

然后用这个代码来跑下癌症预测,代码如下

python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import warnings
from collections import Counter
import pandas as pd
import random

def k_nearest_neighbors(data, predict, k=3):
if len(data) >= k:
warnings.warn('K is set to a value less than total voting groups!')

distances = []
for group in data:
for features in data[group]:
euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
distances.append([euclidean_distance,group])

votes = [i[1] for i in sorted(distances)[:k]]
vote_result = Counter(votes).most_common(1)[0][0] #不使用[0][0],得到的是[('r', 3)]. [0][0]得到元组中第一个元素
return vote_result

df = pd.read_csv('breast-cancer-wisconsin.txt')
df.replace('?',-99999,inplace=True)
df.drop(['id'],1,inplace=True)
full_data = df.astype(float).values.tolist()

test_size = 0.2
train_set = {2:[], 4:[]}#良性恶性两个lable
test_set = {2:[], 4:[]}
train_data = full_data[:-int(test_size*len(full_data))]
test_data = full_data[-int(test_size*len(full_data)):] #最后20%
correct = 0
total = 0
for i in train_data:
train_set[i[-1]].append(i[:-1]) #去掉label,将属性填入

for i in test_data:
test_set[i[-1]].append(i[:-1])

for group in test_set:
for data in test_set[group]:
vote = k_nearest_neighbors(train_set, data, k=5)
if group == vote:
correct += 1
total += 1
print('Accuracy:', correct/total)


准确度很高!

文章作者: Sunxin
文章链接: https://sunxin18.github.io/2020/02/10/knn-application/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 lalala
打赏
  • 微信
    微信
  • 支付宝
    支付宝

评论